LinAlg Recap weeks 1-7

Felix Breuer

November 2023

1 True/false and open questions

For the following questions let $x\in\mathbb{R}^n,A\in\mathbb{R}^{n\times n},B\in\mathbb{R}^{m\times n}$ and V be a vector space.

- 1. Why can ||x|| never be negative?
- 2. ||x|| = 0 if and only if _____
- 3. If A is invertible, rank(A) =_____
- 4. When is $U \subseteq V$ a subspace of V?
- 5. We can compute the A = CR decomposition with the Gauss-Jordan algorithm (to compute rref(A))
- 6. Consider *B*: The number of linearly independent rows does not always equal the number of linearly independent columns.
- 7. How would you prove a set of vectors $B \subseteq V$ is a basis of V?
- 8. If any vector $v \in \text{span}(v_1, \ldots, v_n)$ can be uniquely expressed as a linear combination of v_1, \ldots, v_n , we call v_1, \ldots, v_n
- 9. A basis for the set of polynomials with real coefficients of degree less than or equal to 3 is given by {
- 10. Let **B** be a basis of V and **C** be a generating set of V (span(**C**) = V). How do **B** and **C** differ?
- 11. Multiplying A with elimination matrices from the left doesn't change the span of rows and span of columns of A
- 12. If $\dim N(A) > 0$ we know that Ax = b does not have a unique solution
- 13. How can you compute A^{-1} (assuming it exists)?
- 14. C(B) is a subspace of \mathbb{R}^n
- 15. What can we say about A if $A^4 = I$? What kind of matrix could A be?
- 16. All bases of subspaces of V have the same number of vectors