LinAlg Quiz Week 13

Felix Breuer

December 2023

1 Quiz

Let $A, Q \in \mathbb{C}^{n \times n}$ and $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. The trace of A is defined as $\operatorname{Tr}(A) = \sum_{i=1}^n (A)_{ii}, A^* = \overline{A}^T$.

- 1. $\det(A^*) = \det(A)$
- 2. The eigenvalues of a triangular matrix are given by its _____ entries. (Note: A diagonal matrix is triangular)
- 3. $\sum_{i=1}^{n} \lambda_i = \operatorname{Tr}(A), \prod_{i=1}^{n} \lambda_i = \det(A)$
- 4. Eigenvectors corresponding to different eigenvalues are not necessarily linearly independent
- 5. If we know all eigenvalues of A, we know if A is invertible.
- 6. What are the algebraic and geometric multiplicities of an eigenvalue λ ?
- 7. By the fundamental theorem of algebra, any polynomial with real coefficients has real roots.
- 8. det(PA) = det(A) when P is a permutation matrix (attained from swapping columns/rows of the identity matrix)
- 9. $\det(Q)| = \pm 1$ and $|\lambda| = 1$ if $Q \in \mathbb{C}^{n \times n}$ is an orthogonal matrix $(Q^T Q = I)$ with eigenvalue λ . (Extra question: what if Q is unitary, i.e. $Q^*Q = I$?)