Final LinAlg Quiz Week 14

Felix Breuer

December 2023

1 Quiz

- 1. Let $a_1, \ldots a_n$ be the columns of $A \in \mathbb{R}^{m \times n}$ and b_1, \ldots, b_n be the rows of $B \in \mathbb{R}^{n \times p}$. Then $AB = \sum_{i=1}^n a_i b_i$
- 2. A is not invertible \iff A has only eigenvalue 0
- 3. We can find the representation matrix A of a linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ by taking $T(e_i)$ for all standard basis vectors e_i of \mathbb{R}^n as the columns of A in any order.
- 4. A and $S^{-1}AS$ have the same eigenvalues.
- 5. Per the spectral theorem any symmetric matrix is diagonalizable with positive real eigenvalues.
- 6. What does the spectral theorem state about a symmetric matrix $A \in \mathbb{R}^{n \times n}$?
- 7. A matrix is invertible if and only if it is diagonalizable.
- 8. Give an example of a matrix that is not diagonalizable over \mathbb{C} .
- 9. Let $A = LDL^T$ where L is lower triangular and D diagonal with only positive entries along the diagonal. Prove that then A is positive definite. Hint: If $D = \operatorname{diag}(d_{1}, \dots, d_{n})$ and all diagonal entries are positive D =
 - Hint: If $D = \text{diag}(d_1, \ldots d_n)$ and all diagonal entries are positive, $D = D^{1/2}D^{1/2}$ where $D^{1/2} = \text{diag}(\sqrt{d_1}, \ldots \sqrt{d_n})$