Felix Brever $G - O 4$

Linear Algebra Week 13

メいる

Let $A, Q \in \mathbb{C}^{n \times n}$ and $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. The trace of A is defined as $\text{Tr}(A) = \sum_{i=1}^n (A)_{ii}, A^* = \overline{A}^T$. 1. $det(A^*) = det(A)$ FALSE, $det(A^*) = det(\overline{A}^T) = det(\overline{A}) = \overline{det(A)}$ 2. The eigenvalues of a triangular matrix are given by its **diagonal**
(Note: A diagonal matrix is triangular) ℓ or **a** diagonal matrix, def $A = \frac{1}{1-\tau}$
3. $\sum_{i=1}^{n} \lambda_i = \text{Tr}(A), \prod_{i=1}^{n} \lambda_i = \text{det}(A)$ $\top R \cup E$, prover 4. Eigenvectors corresponding to different eigenvalues are not necessarily linearly independent $\pm A LSE_1$ eigenvectors corresponding to different eigenvalues

5. If we know all eigenvalues of A, we know if A is invertible. TRUE

6. What are the algebraic and geometric multiplicities of an eigenvalu cients has real roots. $\forall A \in S \in \mathcal{E}$, a polynomial with real coefficients has confused to the confuse of necessarily real state (not necessarily real) $T_{A}CSE$, det $(PA) = t$ def A observating on number
ping columns/rows of the identity matrix) $T_{A}CSE$, det $(PA) = t$ def A observating on number 9. det(Q)| = ± 1 and $|\lambda| = 1$ if $Q \in \mathbb{C}^{n \times n}$ is an orthogonal matrix $(Q^T Q = I)$
with eigenvalue λ . (Extra question: what if Q is unitary, i.e. $Q^* Q = I$?) We proof the two stakiness separakly: $\begin{pmatrix} 1 \end{pmatrix}$ $|\lambda| = 1$ Q preserves lengths $Q_V = \lambda_V \implies ||Q_V|| = ||\lambda_V|| = |\lambda|| ||V|| = ||V|| \implies |\lambda| = 7$ $2)$ olet Q=± 1 $1 = o(\epsilon f) = o(\epsilon f) \left(\mathbb{Q}^T \mathbb{Q} \right) = o(\epsilon f) \left(\mathbb{Q}^T \right) o(\epsilon f) = o(\epsilon f) \left(\mathbb{Q} \right)^2$ \Rightarrow det Q | = \pm 1 in the case that Q is unitary we pet $1 = o(\mathcal{U} + \mathcal{I}) = o(\mathcal{U} + \mathcal{U}^*) = o(\mathcal{U} + \mathcal{U}^*)$ $o(\mathcal{U} + \mathcal{U}^*) = o(\mathcal{U} + \mathcal{U}^*)$ = $|o|e| (Q)|^2$ => $|o|e(Q)| = 1$ (on unit circle in complex plaze)

Change of basis

Consider two bases $B_1 = 201, ..., 0n$ $B_1 = \{v_1, ..., v_n\}$ of \mathbb{R}^n vector space, not
 $B_2 = \{v_1, ..., v_n\}$ of \mathbb{R}^n is \mathbb{R}^n Any vector XER" can be represented as atlinear combination of vectors in B_1^o (or B_2). The coefficients of this linear combination written as a vector $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ regarding B_1 (or B_2), $[X]_B$ (or $[X]_{B_2}$) A change of basis matrix allows us to switch between

coordinate representations regarding different bases.

$$
T = \begin{bmatrix} 1 & 1 \\ \begin{bmatrix} 6 & 1 \\ 1 & 3 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 & 3 \end{bmatrix} & \begin{bmatrix} 15 & \text{the change of basis matrix} \\ \text{from } B_1 & \text{to } B_2 \end{bmatrix} \\ 1 & 1 & \begin{bmatrix} 1 & 10 & 10 \\ 1 & 1 & 10 \end{bmatrix} & \begin{bmatrix} 1 & 10 & 10 \\ 1 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 1 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 1 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10 & 10 & 10 \\ 10 & 10 & 10 \end{bmatrix} & \begin{bmatrix} 10
$$

this name is usually used: T transforms space in B_1 to space in Bz

$$
T=\begin{bmatrix}1&1&1\\ \begin{bmatrix}u_{1}\\u_{2}\\u_{3}\\u_{1}\end{bmatrix}_{B_{2}}&\begin{bmatrix}u_{1}\\u_{1}\\u_{2}\end{bmatrix}_{B_{2}}\end{bmatrix}\begin{bmatrix}1_{13}\\1_{12}\\1_{13}\\1_{14}\\1_{15}\\1_{16}\end{bmatrix}_{B_{2}}\begin{bmatrix}1_{11}\\1_{12}\\1_{13}\\1_{14}\end{bmatrix}_{B_{2}}\begin{bmatrix}1_{11}\\1_{12}\\1_{13}\\u_{12}\end{bmatrix}_{B_{2}}\begin{bmatrix}1_{11}\\1_{12}\\1_{13}\end{bmatrix}_{B_{2}}\begin{bmatrix}1_{11}\\1_{12}\\1_{13}\end{bmatrix}_{B_{2}}\end{bmatrix}
$$

Example
$$
B_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, B_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}
$$

\nThe charge of basis matrix from B_t to B₂ is
\n
$$
T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{81} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}_{81} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{82} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}
$$

and takes a vector in coordinate representation regarding B2 to coordinate representation reparding B_7

The change of basis matrix from
$$
B_2
$$
 to B_1 is
\n
$$
T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{B_2} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}_{B_2} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}_{B_2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}
$$

and takes a vector in coordinate representation regarding B_1 to coordinate representation reparding B_{z}

\n**Composition of change of basis matrices:**
\nLet
$$
T_1
$$
 be the change of basis matrix from B_0 to B_1
\n T_2 from B_0 to B_2
\n $\Rightarrow T_1 T_2$ is the change of basis matrix from B_1 to B_2
\n $\Rightarrow T_1 T_2$ is the change of basis matrix. From B_1 to B_2
\n \Rightarrow these vectors from B_2 to B_0
\n \lor etc., in B_0 to B_1 representation.\n

We can use this to construct representation matrices regarding
bases of our choice! Assume A is the matrix of a linear map in regard to the basis β_o (e.g. standard basis): Then T_1 ⁻¹ AT_2 corresponds to the same linear map regarding bases B_1 , B_2 , faking as input a vector in B_2 and giving one back in coordinate representation regarding B_1 .

Exercise Consider the *Ciner map*
$$
L: \mathbb{R}^3 \to \mathbb{R}^3
$$
 defined by
\n $L(x,y,z) = (3x + 4y, 2z, x+y+z)$
\n1) Find the *representation matrix* $A \in \mathbb{R}^{3\times3}$ of L regarding the canonical basis $\{\emptyset\}$, $\{\emptyset\}$, $\{\emptyset\}$, $\{\emptyset\}$, $\{\emptyset\}$ (input) output in this baris)
\n \rightarrow Transform basis vectors
\n $L(C_1, O_1, O) = (3, O_1, 1)^T$
\n $L(O_1, O_1, 1)^T = (O_1, 2, 1)^T$
\n $\Rightarrow A = [L(e_1), L(e_2), L(e_3)] = [\frac{3}{2}, \frac{4}{2}, \frac{9}{1}]$

2) Consider the two bases
$$
B_{1}=\left\{\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 3\\ 3 \end{bmatrix}\right\}, B_{2}=\left\{\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}\right\}.
$$

Find the Change of basis matrices
\n
$$
T_1
$$
 from the standard basis to B_{11} T_1 ⁻¹ (from example)
\n T_2 from the standard basis t_0 B_2
\nand then from B_1 to B_2 give by T_1 T_2

Finally, find the representation matrix of L in regard to bases B_{1}, B_{2} that fakes as input a vector in B2 representation and outputs a vector in coordinates regarding Bn

$$
T_1 = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

$$
T_2 = \begin{bmatrix} 7 & 7 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

 T_1 ¹ A T_2 is the representation matrix of L in regard to bases B_1B_2

Similar matrices, eigen decomposition

 $A, B \in \mathbb{R}^{n \times n}$ are called similar if $B = S^{-1}A S$ for some inertible matrix SELR^{uxu} \rightarrow A and B are the same linear map under different bases, S and s^{-1} are the respective change of basis matrices

some properties

. Similar matrices have the same follows from (1)
1) characteristic polynomiap 2) eigenvalues with same algebraic and geometric multiplicity 3) rank (multiplying with fullrank matrix doesn't change rank)
4) trace (1) 50 deferminant (1)

. The similar relation is an equivalence relation \rightarrow in particular, transitive (see ex. 12.2)

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to q diagonal matrix $\Longleftrightarrow A = \vee \perp \vee'$ for some diagonal matrix Λ ϵ $\mathbb{R}^{n \times n}$. We give this decomposition a special name: eigenvalue decomposition.

Eigenvalue decomposition

Note

The matrix V has to lee the left matrix

The following statements are equivalent: $A \in \mathbb{R}^{n \times n}$ A is diagonalizable An eigenvalue decomposition of A exists . There exists a basis of eigenvectors of A of R" There exist ⁿ linearly independent eigenvectors of ^A • Forevery eigenvalue, the geometric and algebraic
multiplicities are the same

Claim For any eigenvalue λ , $\tau \in$ geometric multiplicity ϵ algebraic multiplicity
Proof that geometric multiplicity ϵ algebraic multiplicity: Assume λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$ with geometric multiplicity k.
dim $N(A - \lambda \mathcal{I}) = k_1$ there exist le eigenvectors $G_1, ..., G_k$ corresponding to λ' . We extend these vectors to a basis and get an invertible matrix V .

$$
V = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

eigereclos

$$
AV = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

We left multiplying with V⁻¹:
$$
(V^{-1}V = I \Rightarrow V^{-1}a_i = e_i)
$$

$$
V^{-1}AV = \begin{bmatrix} I & I & I & I \\ V^{-1}A^{1}B_{1} & V^{-1}A^{1}B_{k} & VA_{1B_{k+1}} & V^{-1}A_{1B_{k}} \\ I & I & I & I \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} O_{i} & O_{i} & O_{i} \\ O_{i} & \sum_{i=1}^{n} O_{i} & O_{i} \\ O_{i} & O_{i} & O_{i} \end{bmatrix}
$$

A and V AV are similar and thus have the same characteristic polynomial:

$$
det(A - \lambda I) = det(v \lambda v - \lambda I) = det \begin{pmatrix} (\lambda' - \lambda)I_{kxk} & 0 \\ 0 & C - \lambda I_{kxk} \end{pmatrix} =
$$

$$
= det((\lambda' - \lambda)\Gamma_{kxk}) det(C - \lambda \Gamma_{kxk}) = (\lambda' - \lambda)^k det(C - \lambda \Gamma_{kxk})
$$

The algebraic multiplicity of λ' is at least $k = \dim N(A - \lambda' \mathcal{I})$,
The geometric multipicialy of λ' .

Example Which of the following matrices is diagonalizable?
\n
$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}
$$

\n $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
\n $C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
\n $B = \begin{bmatrix} 1 & 1 \\$

Unfortunately, not every matrix is diagonalizable (as we see).
Houever, for symmetric matrices the spectral theorem applies.

The Spectral Theorem

Let $A\in \mathbb{R}^{n \times n}$ le symmetric $(A^T = A)$.

- . A has n real eigenvalues
- . There exists an orthonormal basis of R^2 of eigenectors of A
. A has an eigendecomposition $A = U \triangle U^T$ where U
- A has an eigendecomposition $A = U \angle U^{\dagger}$ where V is orthogonal (and U's columns form an orthonormal besis
of 10n) ok (R")

Exercise 11.1 b
\nFind the representation matrix B of the reflection through the
\nplane given by P =
$$
\begin{cases} \frac{1}{3} \left| \frac{1}{6} R^3 \right| 3 \times 4 \cdot 4y = 0 \\ \frac{1}{2} \left| \frac{1}{12} \right| \left| R^3 \right| 3 \times 4 \cdot 4y = 0 \end{cases}
$$
\nThe main idea here is that we can decompose R³ into
\n
$$
P + P^{\perp} = R^3
$$
 where P = span {n} where n is a normal vector
\non P (length one and orthogonal to all vectors in P).
\nProjecting a vector x onto span {n} gives us only the part of x
\nthat's this orthogonal part comp *teleg*, subtracting it twice
\nleips the sign of the orthogonal part. We can express this as
\nfollows: $x = x + x_1$
\nparallel to p
\nvariable to p
\northogonal to P
\nThe projection matrix onto span {n} is: $\frac{n \pi}{n \pi} = n \pi$
\n $nn \pi x = x_1 \implies x - 2n \pi x = (\frac{1}{n \pi} - 2n \pi)^2 x = x_1 - x_1$
\nsuch a matrix is called "how-thedge, matrix" and can be used
\nto compute the QR decomposition (you will see this in Nom Cs.)

Allematively, we can see this as a change of basis problem we seek to find a basis Buhere reflecting along P is a very simple operation - changing the sign of one component of $[X]_B$ To achieve this, we want one basis vector to be a normal vector of ^P and the other two to span the plane ^p

A suitable basis is
$$
B = \left\{ \begin{bmatrix} 3/5 \\ 4/5 \\ 0 \end{bmatrix}, \begin{bmatrix} -4/5 \\ 3/5 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \end{bmatrix} \right\}
$$

spans P^{\perp}
(we can find if $l_{1}l_{2}$ e.g. rotating the first vector appropriately or
sketching P)

we compute the following change of basis matrices from the standard basis to ^B

$$
T = \begin{bmatrix} 3/5 & -4/5 & 0 \\ 4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

from B to the standard basis

$$
T = \begin{bmatrix} -3(5) - 4(5) & 0 \\ -4(5) & 3(5) & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

and the reflection matrix in regard tothe basis ^B

$$
A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

Pie cing this together results in:

\n
$$
B = T A T^{-1}
$$
\nHees vector $\begin{pmatrix} 1 & \text{false} \\ 1 & \text{false} \end{pmatrix}$ takes vector in standard basis to B
\n back to standard reflects vector in basis B
\n basis

References: Last years course Old exams for some of the quiz questions Sergey Treil, Linear Algebra Done Wrong, https://www.math.brown.edu/streil/papers/LADW/ LADW_2021_01-11.pdf