inear Algebra G-04 Week 14

Quiz

- 1. Let $a_1, \ldots a_n$ be the columns of $A \in \mathbb{R}^{m \times n}$ and b_1, \ldots, b_n be the rows of $B \in \mathbb{R}^{n \times p}$. Then $AB = \sum_{i=1}^{n} a_i b_i$ $\top \mathcal{R} \cup \mathcal{F}$
- A is not invertible \rightarrow A has only eigenvalue $0 + A C C$
if suffices that one eigenvalue is 0 (and other nonzero)
We can find the representation matrix A of a linear map $L:$ doesn'thold
- taking $T(e_i)$ for all standard basis vectors e_i of R^n as the columns of A in
- any order. \mp $A LSE$ the order matters!
4. A and $S^{-1}AS$ have the same eigenvalues. \mp RUE can be prove with (without $\frac{d}{dx}$ determinants for yourself
5. Per the spectral theorem any symmetric matrix is diagonalizable with
- positive real eigenvalues. $\begin{array}{c} \text{FALSE} \\ \text{A might have eigenvalues from the image.} \\ \text{As a positive real eigenvalues.} \\ \text{A. } \end{array}$ A might have eigenvalues that are
- $\mathbb{R}^{n \times n}$? A is diagonalizable with real eigenvalues, there exists an orthonormor basis of eigenectors of \mathbb{R}^n , A has spectral decomp. $A = U \triangle U$ with V orthogonal 7. A matrix is invertible if and only if it is diagonalizable. $\Box A \subset S$ Neither direction holds. Consider counterexamples (31) for \Rightarrow , (88) for \Leftarrow 8. Give an example of a matrix that is not diagonalizable over C. A good example is often $A = \begin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$
9. Let $A = LDL^T$ where L is lower triangular and D diagonal with only
- positive entries along the diagonal. Prove that then A is positive definite.

Hint: If $D = diag(d_1, \ldots, d_n)$ and all diagonal entries are positive, $D =$ $D^{1/2}D^{1/2}$ where $D^{1/2} = \text{diag}(\sqrt{d_1}, \dots, \sqrt{d_n})$

$$
x^{T}Ax = x^{T}LDL^{T}x = x^{T}L D^{1/2}D^{1/2}L^{T}x = x^{T}L(D^{1/2})D^{1/2}Lx
$$

=
$$
(D^{1/2}L^{T}x)^{T}(D^{1/2}L^{T}x) = ||D^{1/2}L^{T}x||_{2}^{2} \ge 0
$$

and
$$
||D^{1/2}L^{T}x||_{2}^{2} = O \Leftrightarrow D^{1/2}L^{T}x = O \Leftrightarrow x=0 \text{ as } D^{1/2}L^{T}
$$

is invertible $($ $D^{1/2}$ is diagonal with nonzero diagonal entries, ζ is upper triangular with $1's$ on the diagonal

Hence
$$
x^T Ax = ||D^{1/2}LT_x||_2 > 0
$$
 for all $x \neq 0$, A is PD.

We call a symmetric matrix
$$
A \in \mathbb{R}^{n \times n}
$$

\npositive definite (PD)
\nif all its eigenvalues are positive
\n $(\Leftrightarrow x^{T}Ax > 0$ for all $x \in \mathbb{R}^{n} \setminus \{0\}$)
\npositive semidefinite (PSD)
\nif all its eigenvalues are nonnegative
\n $(\Leftrightarrow x^{T}Ax \ge 0$ for all $x \in \mathbb{R}^{n}$)

Some key facts for SVD: For any AEIR^{h xn}, ATA and AAT are symmetric and positive samidefinite . have the same non zero (real!) eigenvalues spectral theorem

The singular values of A are the square roots of eigenvalues of $A A^{T} / A^{T} A$.

We arrange them in $\Sigma \in \mathbb{R}^{m \times n}$ where $\Sigma_{ii} = \sigma_i$ is the ith largest $sing$ clar value of A and all other entries of Σ are zero.

There are eigenvalue decompositions as follows:

 $AA^{\top} = U \Sigma \Sigma^{\top} U^{\top}$
 $AA^{\top} u_i = \sigma_i^2 u_i$
 $AA^{\top} u_i = \sigma_i^2 u_i$
 $ATA u_i = \sigma_i^2 u_i$ $A A^T = V \Sigma^T \Sigma V^T$ where v_i , is are columns of U/V

U and V are orthogonal per the spectral theorem.

The singular value decomposition

Any AEIR " can be decomposed as

$$
U = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}
$$
 obtums $u_1, ..., m$ **over**
normalized eigenvectors of A4T
inormalized eigenvectors
and rows

- columns un Um are normalized eigenvectors of AAT
- and vows

 $\sum = \begin{bmatrix} \sigma_1 & \cdots & \sigma_r & \sigma_{\text{max}} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_r & \sigma_{\text{max}} & \sigma_{\text{max}} & \sigma_{\text{max}} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{\text{max}} & \sigma_{\text{max}} & \sigma_{\text{max}} & \sigma_{\text{max}} & \sigma_{\text{max}} \end{bmatrix}$ $\begin{array}{rcl} \begin{array}{rcl} \gamma' & \cup & \Omega & \longrightarrow & \Sigma \\ \text{r} & \cup & \cup & \text{r} \\ \text{r} & \cup & \text{r} \\ \text{r} & \cup & \text{r} \\ \end{array} & \begin{array}{rcl} \text{r} & \cup & \text{r} \\ \text{r} & \cup & \text{r} \\ \text{r} & \cup & \text{r} \\ \end{array} & \end{array}$ singular values

$$
\bigvee = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right]
$$

- · columns $v_1, ..., v_n$ (rows of v^{\top}) are normalized eigenvectors of ATA
(rightsingular becodus)
- . orthogonal, hence orthonormal columns and vows

Computing SVD: If we have already computed $U(Y)$ we can get $V(Y)$ as follows: $A = U \Sigma V^T \Leftrightarrow A V = U \Sigma \Leftrightarrow A v_i = \sigma_i u_i$ for $i = 1, ..., n$ $A = U \sum V^T \Longleftrightarrow U^T A = \sum V^T \Longleftrightarrow u_i^T A = \sigma_i \sigma_i^T A$ Find the SVD of $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$ Exercise We compute ATA and AAT along with their eigenvalues/eigenvectors: $A A^T = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} A^T A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ AAT and ATA have nonzero eigenvalues 211 => $\sigma_1 = \sqrt{2}$, $\sigma_2 = \sqrt{1} = 1$ (can be read off from AAT) eigenvadors of AAT : $U_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, U_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ For those of ATA we use u_1, u_2 : v_1 $v_1 - v_1 v_1$, v_1' $A = \sigma_2 v_2'$
 $\Rightarrow [1 \quad 0 \quad -1] = [2 \quad v_1$ which gives us $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \frac{1}{\sqrt{2}}$ $U_1^T A = \sigma_1 \otimes \sigma_1^T$ $U_1^T A = \sigma_2 \otimes \sigma_2^T$ $[0 \t 1 \t 0] = 02^T$
 $(0, 4)$ $AA^T u_1 = 2u_1$, $AA^T u_2 = u_2$ $A^{T}A \nu_{1} = 2 \nu_{1}$, $A^{T}A \nu_{2} = \nu_{2}$, $A^{T}A \nu_{3} = 0 \nu_{3}$ $U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = U^{T}$, $V = \begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix}$

$$
Findamental subspaces with SVD\nspon{u1,...,vr} = C(A)\nspon{v1,...,vm} = N(AT)\nspon{v1,...,vr} = C(AT)\nspon{v1,...,vr} = C(AT)\nspon{vrt1,...,vn} = N(A)
$$

$$
AV = U \sum
$$
\n
$$
A^{T}U = V \sum T
$$
\n
$$
H
$$
\n<math display="</math>

 $/6$

Exercise HS19

a) Die Singulärwertzerlegung der Matrix $A \in \mathbb{C}^{15 \times 10}$ kann graphisch folgendermassen dargestellt werden:

Dabei entsprechen die grauen Kästchen Zahlen aus C, die schwarzen stehen für reelle Zahlen > 0 und die weissen entsprechen der Zahl 0. An einer Singulärwertzerlegung dieser Form, lässt sich eine Basis des Kerns sowohl von A als auch von A^H ablesen. Markieren Sie die Kästchen, in denen sich die entsprechenden Vektoren befinden. Bitte machen Sie deutlich welche Markierung zu welchem Kern gehört.

The Pseudoinverse with SVD

 $A^{\dagger} = V_v \Sigma_v^{-1} V_v^{-T}$

Reduced SVD

As all singular values Granning Gp are zero, columns rand of V and V don't contribute to A_1 we can urite

$$
A = U \le V^{T} = \bigcup_{V} \sum_{r} v \vee \overline{v}
$$

first rows of V^{T}
points of U $\bigcup_{V} \sum_{r}^{P^{T}V} f_{irst}^{S^{T}}$

Examples

Application of
$$
SVD: Image
$$
 Compression

\nEditor-Your- Misky Theorem \rightarrow best low rank approach.

\nAuc is best vant k approximation gA h terms of spectral norm

\nSetting $G_{k+1}, \ldots, G_{p+1} \subset P$ to 0

http://timbaumann.info/svd-image-compression-demo/

References: Last years course https://github.com/mitmath/1806 https://courses.grainger.illinois.edu/cs357/sp2021/notes/ref-16-svd.html