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1 Recap

1.1 [
5
6

]
∈ span(

[
1
2

]
,

[
4
3

]
)?

True: We can solve a linear system of equations to get the scalars such that the linear combination of the two

given vectors equals
[
5
6

]

1.2

Consider the four vectors i, j, k, l pictured above. What is the sum i + j + k + l equal to? What happens if we
subtract k?
Answer: i+ j + k + l = 0. Leaving k out gives us i+ j + l = −k = i.

1.3

There is some vector v ∈ R2 that spans (i.e. span(v) is equal to) the line given below:

False: A line spanned by a vector always contains the 0 vector (0 ∈ span(. . . ) always holds). We call what the
graph shows an affine subspace.
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2 Linear independence

Let’s consider a sequence of vectors v1, . . . , vk ∈ Rn and a vector v ∈ span(v1, . . . , vk). Per the definition of span
we have

v = α1v1 + · · ·+ αkvk

for some α1, . . . , αk ∈ R.
We might ask ourselves: Was this choice of scalars unique? Is there another way to express v as a linear
combination of v1, . . . , vk? Assume there are also scalars β1, . . . , βk ∈ R that also produce v:

v = α1v1 + · · ·+ αkvk

v = β1v1 + · · ·+ βkvk

Subtracting the second from the first line gives us

0 = (α1 − β1)v1 + · · ·+ (αk − βk)vk

Now if the choice of scalars to get v was unique we have αi = βi and thus αi − βi = 0 for all i ∈ {1, . . . , k}.
Hence the only linear combination that gives us the zero vector is choosing zero for all scalars. We then call
v1, . . . , vk linearly independent. Conversely, if there is some linear combination that gives the zero vector where
not all scalars are zero, this sequence of vectors is linearly dependent.

The following definitions are all equivalent:

Definition A sequence of vectors v1, . . . , vk ∈ Rn is linearly independent if the only way to express the zero
vector as a linear combination α1v1 + · · ·+ αkvk = 0 is by choosing α1 = · · · = αk = 0

⇐⇒

Every vector in span(v1, . . . , vk) has exactly one (unique) representation as a linear combination of v1, . . . , vk

⇐⇒

No vector vi ∈ {v1, . . . , vk} can be expressed as a linear combination of v1, . . . , vi−1, vi+1, . . . vk (the other
vectors)

If a sequence of vectors is not linearly independent it is linearly dependent: Thus we negate all the statements
above for this definition.

Definition A sequence of vectors v1, . . . , vk ∈ Rn is linearly dependent if there is a way to express the zero
vector as a linear combination α1v1 + · · ·+ αkvk = 0 where not all α1, . . . , αk ∈ R are equal to zero

⇐⇒

There is some vector in span(v1, . . . , vk) that can be expressed as a linear combination of v1, . . . , vk in more
than one unique way

⇐⇒

Some vector vi ∈ {v1, . . . , vk} can be expressed as a linear combination of v1, . . . , vi−1, vi+1, . . . vk (the other
vectors)

You can find proofs on the equivalence of similar statements in the blackboard notes.

• v1, . . . , vk linearly dependent =⇒ we can remove some vector without affecting span(v1, . . . , vk). In fact,
we can make any sequence of linearly dependent vectors linearly independent by removing vectors. We
will see a systematic method on how to do this (Gaussian Elimination) in the coming lectures.

• Vectors chosen at random are linearly independent with very high probability (you could verify this with
numpy)
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3 Dot product, norm

You have seen two different definition of the (euclidean) dot product in the lecture. First, an algebraic one:

v1...
vk

 ·

w1

...
wn

 = v1w1 + · · ·+ vkwk =

k∑
i=1

viwi

3.1 The euclidean norm

Using this definition we can compute a vectors length which is given by its (euclidean) norm:

Definition A vectors euclidean norm denoted ||v|| is a real number given by

||v|| =
√
v · v =

√
v21 + · · ·+ v2k

and assigns to a vector v ∈ Rn its magnitude.

We can see that this actually corresponds to a vectors length by visualizing a vector in the xy plane and applying
the pythagorean theorem:

Figure 1: The pythagorean theorem gives us c =
√
a2 + b2. This also extends to higher dimensions.

Example What is the length of the vector v =

 1
. . .
1

 in R49?

We get ||v|| =
√
12 + · · ·+ 12 =

√
49 = 7.

The norm of a vector v can be used to get a vector u pointing the same direction as v but with length one (we
call this normalizing): u = v

||v|| .

The lecture also showed a geometric definition of the dot product (cosine formula):

v · w = ||v|| ||w|| cos(α)

where α is the angle between v and w.

How do the two definitions (algebraic and geometric)relate? What is the geometric meaning of the dot product
and what does it tell us (aside from a vectors length)? Read ahead to find out.
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3.2 Geometric interpretation of the dot product

Geometrically v · w corresponds to the following:

1. Project v onto w (the line that w spans)

2. Multiply (signed) length of projection with ||w||

⇒ v · w = s||proj(v → w)|| ||w||

where signed means that if the projection of v onto w points in the opposite direction as w, we multiply the
projection’s length by (−1). s||proj(v → w)|| denotes the signed length of the projection of v onto w.
The following graphs illustrate the 3 main cases:

v · w > 0
v and w point in approximately the same direction

v · w = 0
v and w are perpendicular/orthogonal to each other

v · w < 0
v and w point in approximately the opposite direction

We have now seen that the dot product shows us the length of one vector (by taking its norm ||v|| =
√
v · v)

and relative direction of two vectors (by checking the sign of v · w).
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With the geometric interpretation the geometric definition (cosine formula) becomes apparent:

Per the definition of cosine we get cos(α) = adjacent
hypotenuse =

s||proj(v→w)||
||v|| ⇐⇒ s||proj(v → w)|| = cos(α) ||v||.

Plugging this into v · w = s||proj(v → w)|| ||w|| gives us v · w = cos(α) ||v|| ||w||, the cosine formula.

3.3 Proving the algebraic from the geometric definition

Here we try to find out why one can compute the dot product as a sum of the product of the vector’s respective
entries.

Claim: v · w =
∑n

i=1 viwi

First, we need a few ingredients:

(1) Any vector w ∈ Rn can be written as a linear combination with standard unit vectors ei:

w =

w1

...
wn

 =


w1

0
...
0

+


0
w2

...
0

+ · · ·+


0
0
...
wn

 =

n∑
i=1

wiei

(2) Commutativity of scalar-vector multiplication

(3) Distributivity of the dot product: One can confirm this with either definition of the dot product and also
geometrically. The abstract scalar product is actually defined as being distributive (usually called linearity
in first/second argument).

(4) v · ei = vi: Applying the algebraic definition directly gives us this. However, we cannot reason with this
definition as it is what we want to show. The illustration below shows that cos(θi) = ai

||a|| . The cosine
formula gives us a · ei = ||a|| ||ei|| cos(θi) = ai||ei|| = ai using ||ei|| = 1 in the last step. Taking the dot
product with ei leaves only the part of v in the direction of ei (here the x coordinate of a).

Figure 2: Source: [1]
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Now onto the proof:

v · w = v · (
n∑

i=1

wiei) (w =

n∑
i=1

wiei) (1)

= v · (
n∑

i=1

eiwi) (commutativity scalar-vector multiplication) (2)

=

n∑
i=1

(v · ei)wi (distributivity dot product) (3)

=

n∑
i=1

viwi (v · ei = vi) (4)

We summarize some key ideas surrounding the dot product:

Definition The dot product (euclidean scalar product) is a function Rn × Rn → R that takes two vectors as
input and gives back a real number.
It gives us information the length of one vector (see norm) and angle between two vectors.
Geometrically v ·w corresponds to projecting v onto w and multiplying the (signed) length of that projection
by the length of w:

v · w > 0 =⇒ v and w point in approximately the same direction
v · w = 0 =⇒ v and w are perpendicular/orthogonal to each other
v · w < 0 =⇒ v and w point in approximately the opposite direction

Algebraic definition:

v · w = v1w1 + · · ·+ vnwn =

n∑
i=1

viwi

Geometric definition (cosine formula):

v · w = ||v|| ||w|| cos(α)

• Remark: It’s also possible to define a scalar product and norm in a more abstract way through describing
its required properties (see e.g. Linear Algebra Done Right - Axler, Definition 6.3)

4 Cauchy-Bunjakowski-Schwarz and triangle inequality

These two inequalities occur very often in mathematics. The Cauchy-Bunjakowski-Schwarz (CBS) inequality is
stated as follows:

|v · w| ≤ ||v|| ||w||

Applying the geometric interpretation v · w = s||proj(v → w)|| ||w|| gives us (assuming w ̸= 0):

| s||proj(v → w)|| ||w|| | ≤ ||v|| ||w||
⇐⇒ ||proj(v → w)|| ||w|| ≤ ||v|| ||w|| (lifting the absolute value)

⇐⇒ ||proj(v → w)|| ≤ ||v|| (dividing by ||w||)

where the last statement can be read as ”the length of v projected onto w can never exceed the length of v”
which makes a lot of sense geometrically!
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