Felix Breuer $G - O 4$

True False		
1. Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$	14. A B is invertible, then A and B are invertible.	
1. Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$	14. A B is invertible for neither A nor B is.	
2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	14. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	15. $\begin{bmatrix} RUE \\ rank(A) & rank(B) \\ SEE \end{bmatrix}$
2. $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	18. $\begin{bmatrix} RVE \\ rank(B) & k \end{bmatrix} = \begin{bmatrix} -a_1B \\ -a_1B \\ -a_1B \end{bmatrix}$	
3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	19. $\begin{bmatrix} RVE \\ rank(B) & k \end{bmatrix} = \begin{bmatrix} -a_1B \\ -a_1B \\ -a_1B \end{bmatrix}$	
4. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	19. $\$	

LU decomposition continued

$$
\Leftrightarrow E_{\kappa} \cdots E_{\lambda} A = U
$$

\n
$$
A = (E_{\kappa} \cdots E_{\lambda})^{T} U
$$

\n
$$
= E_{\lambda}^{T} \cdots E_{\kappa}^{T} U
$$

\n
$$
= LU
$$

• Row per mutation s
\nIn some cases it's necessary to swap rows when performance
\nGauss-E-limination (zeroes in pivot position!).
\nIn these cases we keep track of all row exchanges
\nin a sequence matrix
$$
P
$$
:

$$
\begin{bmatrix}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1\n\end{bmatrix}\n\begin{bmatrix}\n0 & 2 & 2 \\
2 & 4 & 3 \\
1 & -1 & 2\n\end{bmatrix} =\n\begin{bmatrix}\n1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 2 & 3\n\end{bmatrix}\n\begin{bmatrix}\n2 & 4 & 3 \\
0 & 2 & 2 \\
0 & 0 & 7\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n0 & 0 & 0 \\
0 & 0 & 7 \\
1 & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n2 & 4 & 3 \\
0 & 2 & 2 \\
0 & 0 & 7\n\end{bmatrix}
$$

Solving
$$
Ax=b
$$

\n $Ax=b \Rightarrow PAx=Pb \Rightarrow PLUx=Pb$
\n $A \cdot S_0 e^{-U}Lc = Pb$ for c

2. Solve Ux = c for X

$$
x \text{ amplec} \qquad A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 3 & 4 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 2 & 3 & 4 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 1 & 3 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 2 & 3 & 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}
$$
\n
$$
x \text{ for } b = \begin{bmatrix} 2 \\ 3 \\ 11 \end{bmatrix}, \qquad p \text{ is } = \begin{bmatrix} 3 \\ 2 \\ 11 \end{bmatrix}, \qquad p \text{ is } = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}
$$
\n
$$
x \text{ where } x \text{ is a perfect}
$$
\n
$$
x \text
$$

Why LU decomposition is useful: We only have to perform elimination once (O(n³)) and can
there a fire that have any vector b in O(n²) by forward/ then solve $A x = b$ for any vector b in $O(n^2)$ by forward, backward elimination

Vector Spaces So far we only considered vectors as elements of IR We can definevectors in ^a more abstract way by describing the properties of vector addition and scalar collars multiplication vector as ^Avectorspace is ^a set ^V over ^a field ^F along with two operations linear combination Vx ^v ^v vector addition finer fitsthese etineications such that the following f axioms are Let air we ^V ^X ^B ^E F Tf 1 Vtw ^w tr vector addition ² ut ult ^w ^u txt ^w ⁴ there is rev rt ^c ^y ^o ⁵ there is lev Tru scalar multiplication ^G NV ^K Blu both scalar multiplication ⁷ ^x Cut ^v auto ^v vector addition ^f at Blu auto We don't need to memorize these they are the properties of vector addition and scalar multiplication already familiar to us Examples ^C over IR Rn ^x the set of nxn Pn the set ofpolynomialsof matrices degree In an ^x ^t tanxtaolan aoe ^R

For some fixed ⁿ

We consider
$$
V = \{\begin{bmatrix} R \\ R \end{bmatrix} \in \mathbb{R}^2\}
$$
 with the operations:
\n $+:[\begin{bmatrix} R \\ R \end{bmatrix}] \mapsto \begin{bmatrix} R + c \\ b - d \end{bmatrix}$
\n $\cdot : (\alpha, \begin{bmatrix} R \\ R \end{bmatrix}) \mapsto \begin{bmatrix} R + c \\ b \end{bmatrix}$
\nIs this a vector space? No! Not commutative.
\nIs this a vector space? No! Not commutative.
\nWe can check this as follows:
\n $1 \cup i$ is non-empty: $0 \in U$
\nWe can check this as follows:
\n $1 \cup i$ is non-empty: $0 \in U$
\n $2 \cup i$ is closed under vector addition
\n $-\frac{1}{2} \cup \frac{1}{2} \cup \frac{1}{2$

By Quartl - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32747153

skew-symmetric

 $Clein: U = \{A \in \mathbb{R}^{h \times n} | A = -A^T\}$ is a subspace of $\mathbb{R}^{n \times n}$
Proof:

We check the two properties 1. U is non-empty 2. U is closed under vector addition and scalar multiplication.

1.
$$
0 = -0^T \implies 0 \in U
$$

\n2. Let $A_1 B \in U_1 \propto \mathbb{R}$
\n \oplus : $A_1 B = -A^T - B^T = -(A + B)^T \implies A + B \in V$
\n \oplus : $AA = \alpha (-A^T) = \alpha ((-1) A^T) = (\alpha (-1)) A^T = -\alpha A^T \in U$
\nHence U is a subspace of $\mathbb{R}^{n \times n}$.

$$
B = \{v_{1}, \dots, v_{k}\} \subseteq V \text{ is a basis of } V \text{ if } \vdots
$$

• span
$$
\{v_{1}, \dots, v_{k}\} = V
$$

•
$$
\{v_{1}, \dots, v_{k}\} \text{ is linearly independent}
$$

Every vector in V can be uniquely expressed as a linear combination ofvectors from B

The dimension of V, denoted dim V is the cardinality of any basis of V

Examples There are usually many choices for a
basis (infinitely many)
.
$$
S_{\theta}^{(1)}, [9]
$$
; is the standard basis of \mathbb{R}^2 but as you
saw in the first exercise sheet $\{[1], [7]\}$ is
a basis as well!

\n- dim
$$
IR^n = n
$$
\n- dim $P_n(x) = n+1$ with the standard basis $\{1, x_1, \ldots, x^n\}$
\n- Given R forms a *ve chern space of dimension* Z with basis $\{1, 1\}$
\n- Every C *over* C *dimension* A_1 *basis* $\{1\}$
\n

 $odim$ I $K^{max} = n$

Exercise Find a basis of
$$
U = \{A \in \mathbb{R}^{2 \times 2} | A = -A^{T}\}
$$

\nLet $A \in U$. $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = -A^{T} = \begin{bmatrix} a & -c \\ -b & -d \end{bmatrix}$
\nThis gives us : $a = -a \Rightarrow a = 0 \Rightarrow a = 0$
\n $d = -d \Rightarrow d = 0$
\n $\Rightarrow A = \begin{bmatrix} 0 - c \\ c & 0 \end{bmatrix} = c \begin{bmatrix} 0 - 1 \\ 1 & 0 \end{bmatrix}$. Hence a potential basis is

General approach

To find basis of subspace, consider the definition of that subspace. $\#$ free variables $=$ dim. We can form an equation
with all free variables and then set one freevariable to 1, all others
to 0 Deine this for each free variable aires us a basis of the subspace: to O. Doing this for each free variable gives us a basis of the subspace

Dimension of *subs* pace, of *(skew)* symmetric matrices
\n• dim
$$
\{A \in IR^{n\times n} | A = -AT\} = \frac{n(n-1)}{2}
$$

\n n^2 entries, diagonal is 0 \Rightarrow n options less. lower triangle determines upper
\ntriangle \Rightarrow we can choose half the entries *lekt*
\n• dim $\{A \in IR^{n\times n} | A = A^{T}\} = \frac{n^2 - n}{2} + n = \frac{n(n+1)}{2}$
\nwe can choose the diagonal entries

Two important subspace:
$$
CA
$$
 and $N(A)$
\nLet $A \in \mathbb{R}^{m \times n}$: (or $A: V \rightarrow W$)
\n $\begin{array}{l}\n\text{coform space:} \\
\text{range:} \\
\text{order:} \\$

Hence the claim holds.

Previous iteration of the course for some of the examples Sergey Treil, Linear Algebra Done Wrong, https://www.math.brown.edu/streil/papers/LADW/ LADW 2021 01-11.pdf (example on page 2) Also shoutout to Sergey Prokudin, my TA from last year, for his great exercise sessions

References