











































































































Linear Algebra FecigBorge

Week 9
The four fundamental subspaces cont'd

AERMM rank A r

CA N CAT

AT NCA

olim CA r dim NCAT m r

olim CAT r dim NCA n r

The big picture

limo I
m

Heb CA
ran combination

of columns

kn
E Axn O j am

din m r
dim n r




















































https://www.desmos.com/3d/d8fb99479d
























































example A1387
CAT

CA

I NCAT

NCA

m rows Z olim A tolimNCAT 2 0

n columns 3 dim CAT dim NCA 2 1

subspace basis dimension
CA IT EIR Z

NCA EH EIR y

CAT I EIR z

NCAT 8 EIR o

corrected 3 6














































































































ExtraExampley Let A e 1124
7 have rank 3

not discussed what are the dimensions of
in session

A NCA AT NCAT

ÉÉ dim CA dim CAT 3
dim NCA 7 3 4
dim NCAT 4 3 7

Just knowing the rank and dimensions of A tells

us a lot of information
e g regarding uniqueness and

existence of solutio

to A b

Exercise
2 Let A einen be symmetric
Claim If Ax O and A 2 52 X and z are orthogonal

we can use that NCA and At are orthogonal

A x O hence X E NCA

AZ ATz 5z hence SZE CAT

x 52 0 NCA t CAT

5 x 27 0

x 2 0

Thus per definition x and z are orthogonal














































































































A related and famous theorem is the followingjpn 1pm
Rank Nullity Theorem

dim CA t olim NCA dim domain AT n

pg 31

A similar result as the following was proved in the lecture
We didn't do this proof in the exercise sessionbut if you found
the proof at the bottom of page 31 confusing

maybe this is

helpful
Gaim AT I N A dotprook

Let xe NCA Then per definition Ax fit so

Axe O 4 0

ant x o

x is orthogonal to any row of A deforthogonal

Let y eRCA CAT
Then y L att am amt for some on i am EIR

Y 21297,4 IE LTamt distributivitydotproduct

I att Smegma

I is orthogonal to any elementyin RCA AT

which is a linear combination of
the rows of A

An arbitrary Xe N A is orthogonal to all elements of

A T Hence C AT INCA per definition














































































































Least Squares
Let AeIRM beRm m n

n
a

wish list A where n

Felis it be

m A
X

b m

when the number of equations ml is much larger than the
number of unknowns n usually Ax b has no solution

The least squaresmethod allows us to find an approximate
solution

avg.my lAx bll
augmingivesus therectory

t.tteiiiim t1ee pressio

But how do we find X A geometric derivation of the
normalequations

b a
b Ax

HAxx














































































































b AXL CCA

b A E CCA
t

b A X E NCAT

Atb Axt O

ATA Atb

Fnormalequations

Exercise HS 20
x y 115

Given are data points x2 y 2 213

x3143 3 7

Find coefficients of the polynomial

f x aot any such that vertical
x4144 4,4

distances between fix and the given points is
minimized

in the least squares sense and compute

and.gg e alflxil yjf
a

I
Solve with normalequations

side note
ATA's entries olofproducts of columns

AAT's entries dot productsof vous ofAIofysmoteest.gs









































































https://igl.ethz.ch/teaching/linear-algebra/la2022/notes/
22_11_30+12_02.pdf





































what does this actually minimize

Ax bklÉÉaujxj bn

MAX BIE LAX b Ax b ÉIÉÉaujxj buy
some remarks sum ofsquavefenction

crucial part finding A
practice sometimes the main task is

understanding what you're supposedto
do so getting familiar with how
thingsmightbeworded isgood
Sometimesthere's a picture in the exam
e g of non linear fiction notuseful
for solvingthe taskusually

As long as objective function is linear in
the parameter

we want to find we can use leaf squares

Slides from last year that show application of
least squares














































































































Projections
The projection of belR on a subspace SEIR is

projs G apg.mg
in 1lb pll

There's many fundamental and interesting questions about
projections e g Why is such a projection orthogonal
whichmight have been covered in the lecture

I encourage you to use the
lecture notes and question

the given definitions what do they capture and why how

Let AER and beRm

The vector ER that fulfills the normalequations leads to t

projection of b onto CA Assuming rank A n we get
using rank A n rank ATA n exercise sheet 7.2

A ATB A

b onto CCAa

LET b projection of b onto subspace
spanned by a

we can confirm this with the geometric meaning of the
dot product discussed in week 2 and derive

the formula
with a similarargument to the one used earlier to derive

the normal equations this can also be found in
the lecture

notes














































































































Ortho normality
We call a set of vectors an an orthonormal if
each vector in the set has length one and is orthogonal to
all others in the set We can express this as

at a j 9 III Sis

Can you give an example of such a set
Is any such set linearly independent

Anexample of such a set is the canonical basis of IR

87,1 187

Why are orthonormal vectors useful

There.me oaE Ists 99 insertions p

We call a matrix Q EIR orthogonal if QQ I

Properties the columns and rows of Q form
orthonormal bases of IRn
they preserve lengths 110 11 11 11

What kinds ofmatrices are orthogonal
Rotations reflections





































































https://www.desmos.com/3d/ac00d3e14b









References:

Last years course

https://github.com/mitmath/1806










The Gram Schmidt Algorithm

input an ian linearly independent

output un un orthonormal

span un big span an an for all neken

Pseudocode

unit
for k 2 in affect
Ta AK IF an Ui Ui

Uk FgProjection of an
onto

spanCan Uk n

Demeo


